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We consider the problem of reducing the three-dimensional equations of the theory of 
elasticity to two-dimensional shell equations, a problem which has excited considerable 
interest during the last decade. 

There are numerous results in this area, and they will be discussed here only from a 
general point of view, without details. A more detailed treatment may be found in sur- 

veys [l - 41. 

1, Suppose that the problem of studying the state of stress of a thin elastic shell, 
within the framework of the linear theory of elasticity, may be posed as a three-dimen- 

sional boundary value problem 

M(@) = 0, nn’(@) = Mof, Mb(@) = Mob (1) 

where the equations represent. respectively, the system of equations of the theory of elas- 
ticity, the conditions on the surfaces, and the conditions on the edges of the shell. Here 
UB represents the set of unknown quantities, for example the stresses and displacements. 

Then the task at hand consists in constructing a sequence of two-dimensional boundary 

value problems Lj(Y,, ‘u,,..., Yj) = tj,O 

L$(Yl, Y2 ,..., Yj) = Lb,,0 0’ = 1,2,..*) (2) 

where the first equation represents a two-dimensional system of equations, the second 
represents the boundary conditions, and the ‘u, are some new set of unknown quantities. 

The connection between (1) and (2) consists in the statement that certain expressions 
H,, composed in a definite manner from the solutions Y> of the two-dimensional 
problems, should in some sense approach the solution of the three-dimensional problem 
as j+cp HJ(Y,, Y?,..., Yj) + 0 

To solve this problem many approaches have been tried which will not be described 
here. However, if we neglect details, the vast majority of ihe methods may be grouped 
into three categories: (a) the method of hypotheses; (b) the method of expansion with 
respect to thickness; and (c) asymptotic method. 

2. The method of hypotheses consists in imposing certain assumptions on the charac- 
ter of the function 9 , these assumptions being chosen so that they allow a two-dimen- 
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sional formulation as a boundary-value problem 

#C(Y) = 4, Lb(Y) = Q 

which is in some sense equivalent to the problem (1). 
This method does not lead to a sequence of boundary value problems, but rather to 

some definite boundary value problem, which may be varied only in its second order 
terms, and only according to the accuracy with which the given hypothesis is realized. 

The simplest and most important example of a theory constructed by the method of 
hypotheses is the classical theory, which was developed only at the end of the last cen- 

tury and which has not lost its significance since that time. It is based on the Kirchhoff- 
Love hypotheses, and in this case the symbol \It would represent, for example. the forces, 
moments, and displacements of the mean surface. 

Other hypotheses have also been formulated, less rigid than those of Kirchhoff-Love 
[5 - 91. Further on in connection with this we shall speak of a method of weakened hypo- 

theses. 

3, The advantages and shortcomings of the method of hypotheses are very significant 

and evident: the advantages consist in the clarity and relative simplicity of the final 
form; the disadvantages are found in the impossibility of increasing the accuracy (with- 

out changing the hypotheses) and in the difficulty in obtaining error estimates, 

4. Recently a great amount of attention has been focused by foreign scholars on the 

work of Koiter [lo and 111 and John [IP], who undertook anew to eliminate the second 
of the indicated disadvantages for the classical theory of shells (among the earlier papers 

dealing with this question, we recall 1131). 
Koiter and John modified the Kirchhoff-Love hypotheses in that they related them, 

roughly speaking, by assumptions on the planar character of the stress function (i. e. by 
the assumption that all stresses not directed parallel to the tangent plane of the mean 
surface are relatively small). Working under this new formulation, which, though new, 
does not change the essential points, they obtained an estimate for the error in the Kirch- 
hoff-Love hypotheses (not only for linear, but also for nonlinear problems), which, staying 

closer to Koiter’s formulation, may be expressed by Formula 

e = max (0(/G,), O(h,s-st)) (3) 

where h, is the relative thickness, and 1 is the variability index. 
It should be noted that Koiter and John estimate only those errors which arise in pass- 

ing from the three-dimensional equations of the theory of elsticity to the two-dimension- 
al equations of shell theory, but ;do not consider the errors connected with going from the 

three-dimensional boundary conditions to the two-dimensional ones. Therefore their 
results, though very important, strictly speaking,are unsufficient to account for the errors 
obtained in shell calculations, i.e. in solving the corresponding two-dimensional bound- 
ary value problems. We shall shortly come back to this point. 

6. The method of expanding with respect to thickness consists in representing 0 in 
the form @ = X%(Y) @,,(a, fJ) 

where y is the transverse coordinate and a, p are coordinates in the mean surface. 
The unknown quantities Y, in this method are taken to be the coefficients CD,, for 

which a sequence of boundary value problems (2) are formed by some method or,another. 
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The functions v,(y) are most often chosen in the form of pbwers of y (see 114 - 201) 

or Legendre polynomials’ ril- 241. 

6, By asymptotic methods we mean those in which the smallness of the thickness of 
the shell is used most.fully. In this approach one deals at each stage of the calculations 

only with quantities of the same order of magnitude relative to powers of he. Thus, basi- 
cally, in all papers based on an asymptotic method r25 - 373. 

B 

n-0 

The essential difference between the asymptotic method and the method of expansion 

with respect to thickness appears in the structure of the boundary value problems (2). 
In the method of expansion one obtains boundary value problems (2) of general type; 

thus for fixed i the entire group of unknowns Yr, %, ,..., Yj must be determined 
simultaneously, by solving a boundary value problem whose order increases with increas- 

ing i. 
In the asymptotic method the sequence of boundary value problems (2) assumes the 

form L(Y,) = Fj (Yy,, ‘i’z,..., yj-,,, Lb(‘J’j) = Fjb(% ‘G..., qj_3 

where F1 and Fjb are known expressions involving the functions indicated. 
This means that the boundary value problems (2) in the asymptotic method have an 

iterative character, i.e. the solution process consists in a infold solution of boundary 

value problems, the problems differing among themselves only in the meaning of the 
known functions entering into the right sides of the equations and boundary conditions. 

7, The method of hypotheses, the method of expansion with respect to thickness, and 

the asymptotic method are directed toward the solution of one and the same problem; 
and regardless of their apparent differences, should lead to similar results. The various 

schemes for constructing a general theory of shells will be considered in more detail 

from this point of view. 

8. The simplest, and at the same time the most important property of the state of 

stress of a thin shell is the fact that it can be separated into an internal state of stress dis- 
tributed, as a rule, throughout the shell, and a boundary layer state of stress localized near 

the edge of the shell. 

9. The differential equations of the classical theory have no integrals corresponding 
to a boundary layer. Thus it follows that the assumptions imposed at the basis of the clas- 

sical theory exclude the entire boundary layer, retaining only the internal state of stress. 
This property may be taken as decisive for Kirchhoff-Love-type hypotheses (in this sense 
we mentioned earlier that the assumptions of Koiter and John do not differ essentially 
from the hypotheses of Kirchhoff-Love type). 

10, The method of expansion with respect to thickness and the method of weakened 
hypotheses lead to equations of higher order than those of the classical theory. The in- 
crease in order is obtained through extra terms with small (as h, -j 0) coefficients. An 

asymptotic analysis of the partial differential equations with this type of perturbation 
138 - 401 shows that if the perturbing terms lead to an increase in the order of the equa- 
tion, then their effects are first, that they produce small changes in those integrals belong- 
ing to the unperturbed equations, and secondly, they generate new integrals with sharp 
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variation. The latter correspond to a boundary layer (thus by weakened hypotheses one 

understands assumptions which retain the boundary layer in some sense). 

Note. The classical shell equations also have decaying solutions, corresponding to:the 
so-called edge effect, known already to Love. The ordinary layer differs from them in 
that it has a large variability index t (for the edge effect t ( l/2 and for the boundary 

layer t = 1). 

11. The considered property of the state of stress of a shell appears most clearly in 
the asymptotic method. 

Various representations for the solution in the form (4). due to different cho$zes for the 

exponent. ok, correspond to different iterative processes for solving the equations. They 

deal with basic iterative processes, allowing the construction of internal state of stress, 
and also auxiliary iterative processes for the solution in the boundary layer. 

It is shown in @8 and 301 that to satisfy the boundary conditions formulated in terms 
of the three-dimensional theory, one must use the available freedom not only of the 

basic, but also of the auxiliary iterative process. From this it follows, as a rule, that the 

state of stress of the shell will be separated into an internal state of stress and a boundary 
layer. 

12. Thus, the method of weakened hypotheses, the method of expansion with respect 
to thickness, and the asymptotic method agree qualitatively one with another as regards 

the particular property of the state of stress mentioned above. This general assertion 

has been verified by a concrete asymptotic analysis of the differential equations for the 
deflection of a plate. This was carried out in c;?4] for the equations constructed by the 
method of expansion with respect to thickness, and in [41] for the equations constructed 
by the method of weakened hypotheses. However, it should not be thought that the dif- 

ference between the asymptotic method on the one hand, and the method of expansion , 
or the method of relaxed hypotheses on the other, reduces only to the question of the 
stage at which an asymptotic analysis of the equations is performed. On the edges be- 

tween the narrow sides of the shell and its faces, there will appear singuliarities in the 
solution of the three-dimensional problem. In the method of expansion or the method 

of relaxed hypotheses they are “smeared out”, i.e. approximated by continuous functions; 
whereas in the asymptotic method they are “singled out” and become singuliarities in 
solutions of the boundary layer equations. 

13. Let us examine the physical content of the concepts of the internal state of stress 
and the bounday layer. 

The nature of the internal state of stress is clear: it is that state of stress which is 

obtained in first approximation when the shell is treated according to the classical theory. 
It is produced by external surface forces and a portion of the boundary forces which are 

nonself-balancing(here and below we include reactive forces from supports among the 
boundary forces). 

The boundary layer is produced by the portion of boundary forces which are self- 

balancing through the thickness of the shell. On the edge of the shell we fix some nor- 
mal n to the mean surface and consider the section of the body in the form of a curved 

strip q produced by slicing it by a plane through n orthogonal to the edge (Fig. 1). 
Then, roughly speaking, the boundary layer near n may be treated as the state of stress 
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arising in the strip rl from the action on its end piece of some self-balancing force sys- 

tem. According to the principle of Saint-Venant, the boundary layer decays rapidly away 
from the edge, and the curved strip may in first 

approximation be replaced by a straight strip. 
Such an interpretation appears superficial, but is 

%#y verified by the fact that the boundary layer con- 
structed by the asymptotic method in the first 

Fig. 1 
approximation reduces to the search for decaying 
solutions of plane and antiplane problems of the 

theory of elasticity in a straight semistrip r23 - 371 (see also Appendix). 

14. The internal state of stress and the boundary layer may be distinguished from one 

another not only by their physical significance, but also by the mathematical formulation 
of the corresponding problems. Therefore any refined shell theory should be judged 

according to its capacity for describing the boundary layer as well as the internal state 
of stress. Such a test would appear difficult for most any theory. In particular, from this 

point of view neither the method of expansion with respect to thickness nor the method 
of relaxed hypotheses are totally effective. They describe well the internal state of stress 
in which the stresses and displacements vary through the thickness according to a simple 
law, but are ill suited to describing the boundary layer, in which the displacement profile 
near the edge may have a very strange appearance. 

16. In connection with the foregoing, the idea of a separate study of the theory of 
internal state of stress and of the theory of the boundary layer merits consideration. 

A theory of the internal state of stress would arise as a direct generalization and refine- 
ment of the classical theory. We shall speak below of this in more detail. The theory of 

the boundary layer, or, if desired, the theory of edge effects, should be constructed as new. 
This problem apparently must be treated as the problem of constructing decaying solu- 

tions of plane and antiplane problems of the theory of elasticity for semistrips. 

16. A clear way to use the idea of separation of the basic state of stress and boundary 
layer is not available in every problem in the theory of shells; however in linear prob- 

lems of the static equilibrium of shells, approaches based on this idea are very obvious. 
It is shown in [‘L3 - 371 that if one is satisfied with a first approximation for the basic 
state of stress and for the boundary layer, then the treatment of the shell takes place in 
two stages: the first consists in proceeding according to the classical theory, and the 
second, in constructing the boundary layer. The first stage here does not depend at all 

on the second, and this means that all calculations carried out within the framework of 
the cfassical theory retain their validity, but are now seen to be calculations which in 
certain cases must be supplemented by the construction of a boundary layer. 

17, The interaction between the internal state of stress and the boundary layer appears 
only in the process of finding boundary conditions on the lateral edges. To say it another 
way, it reduces to a “distribution of responsibilities”: The internal state of stress reacts 

with those active and reactive boundary forces which are nonself-balancing through the 
thickness, whereas the boundary layer is concerned only with the self-balancing part of 
these forces. 

Thus in forming the complete state of stress of the shell, the boundary layer plays a 
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dual role: firstly, it produces a local change in the total state of stress, added near the 
edge to the internal state of stress; secondly, it infuences the internal state itself by 
changing the boundary conditions which the latter should satisfy. The question naturally 
arises as to how significant each of these two effects is. 

18. It has been shown that at the edge the maximal stresses in the boundary layer 

are commensurable in intensity with those of the internal state [30, 34, 36 and 411. 
Therefore the problems in which it is important to study the state of stress of the edge 
zone, for example the problems of concentration of stresses, belong to the class of prob- 
lems for which the calculations must be completed by constructing a boundary layer. 

19. The influence of the boundary layer on the internal state of stress is no longer 

strictly an edge effect; it leads to a total change. One of the methods of estimating 

the magnitude of this effect consists in trying to completely separate out the considera- 
tion of the problem of the internal state of stress, so that the influence of the boundary 

layer is expressible in the form of a correction to the boundary conditions. This is hardly 
possible in all accuracy, but may be done within the framework of a certain number of 

assumed approximations. Moreover, Friedrichs showed [il5] that the effect of the bound- 
ary layer is already considered in the classical theory. Namely, the known modification 

of the boundary conditions in plate theory due to the introduction of the cross-acting 
forces mentioned is the very effect of including a boundary layer. In [423 it is shown 
that the mentioned normal and shear forces have the same sort of meaning as regards 
the boundary conditions in shell theory. 

A somewhat more accurate explanation of the formulation of boundary conditions in 

classical shell theory and its relation to the boundary layer is given in Appendix. 

80. The influence of the boundary layer on boundary conditions for the internal state 
of stress may be described even more exactly than was done by Friedrichs, Green and 

Laws. 
For the theory of deflection of plates this was done in [43], where the following bound- 

ary conditions for the internal state of stress were derived: 

free edge 

hinged edge (o = r1 = W = 6) 

Mm+ Ahg+Bkhi$ -0, 
‘B 1 w=o 

hinged edge (a = u = w = 0) 
Ma=O, w=O 

rigidly clamped edge (U = u = w = 0) 

(5) 

The terms on the left of these equations, exclusive of the bracketed terms, represent 
the well known boundary conditions from the classical theory of the deflection of plates. 
The bracketed terms yield the influence of the boundary layer; in these terms .k is the 
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curvature of the edge, v is Poisson’s ratio, and A, B, C are numbers whose determina- 
tion can only be made by solving certain plane and antiplane problems from the theory 

of elasticity A s i.26,, B z - 0.0083, C =: - 0.0917 for v = r/s 

The parentheses following the designation of the manner the edge is fastened indicate 
the corresponding boundary conditions in the three-dimensional theory (a is normal stress 
and ‘tf, T,, are shear stresses directed along the tangent and normal to the middle surface, 
respectively). 

21. From (5) it is clear that in plate theory the influence of the boundary layer is 
expressed by terms of the order h+, where h* is the ratio of semithickness to a typical 
dimension in the shape of the plate. 

If the variability of the state of stress along the edge is large, then the influence of the 
boundary layer due to terms containing derivatives is increased to result in quantities of 
the order a = O(h,‘-‘) (6) 

In Koiter’s and John’s works the assumption of the planar character of the state of stress 
is essentially a hypothesis of Kirchhoff-Love type: it eliminates the boundary layer. 
This means that their estimate of the error in the shell equations (3) may be considered 

as an error estimate for boundary problems in shell theory under the additional assump- 
tion that the influence of the boundary layer does not exceed the order in (3). Such an 

assumption is not always satisfied, as is evident from a comparison between (3) and (6). 

22. In formulating shell problems as boundary value problems, one often uses a very 
rough schematization of the physical conditions at the edge of the shell. The refinement 

of the boundary conditions metioned above (5) allows us to judge the possible consequen- 
ces of so doing. For comparison purposes two variants of the three-dimensional boundary 

conditions are given, corresponding to so-called hinged support. They lead to identical 
boundary conditions within the framework of the classical theory of the deflection of 

plates, but the correction terms are totally different. This means that in refining the the- 
ory of shells one must maintain sufficient accuracy even in formulating the edge condi- 

22. Returning to a comparison of the asymptotic method and the method of expansion 
with respect to thickness, we note that the second of these methods has greater generality 
than the first. 

The method of expansion with respect to thickness is applicable even in the case when 

the thickness of the shell is not small. Moreover, in this method no assumptions are made 
beforehand regarding the nature of the state of stress sought. The asymptotic method is 
based essentially on the smallness of the thickness of the shell and it involves certain 
implicit assumptions about the nature of the state of stress. They are made when the 
choice is made for the number u in expansion (4). The advantages of generality are 
obvious. They are on the side of methods of expansion with respect to thickness, which 
are probably also preferable, for example, in such problems as the construction of a the- 
ory of shells for moderate thickness. However, this generality is attained at the price of 

increasing the complexity. and it often proves advantageous to restrict one’s attention 
to sufficiently simple cases. In this sense the advantage lies on the side of the asympto- 
tic method. 

An example of the use of this advantage was already given above: an appropriate 
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choice of u ln expansion (4) makes It possible to separate the internal state of stress 

from the boundary layer. 

24. Each’ rigorously constructed two-dimensional theory of thin shells is equivalent to 

a formulation of some properties of the solution of three-dimensional boundary value 
problems of the theory of elasticity, applied to narrow regions. It Is hardly to be expected 

that these properties will be of a sufficiently simple form If certain limitations are not 

introduced when posing the question. Therefore one may expect that a sufficiently slm- 
ple two-dimensional theory will be a specialized theory, i.e. a theory which is intended 
for only a specific class bf problems. As will be shown below, the asymptotic method 
yields the better possibilities for this. 

26, We shall consider In greater detail the theory of the Internal state of stress, pro- 
ceeding with the asymptotic method and with the view In mind of examining more close- 
ly the connections between this theory and the classical theory. 

One of the possible variants in the choice of the exponent in (4) is such that In expanded 
form the equation will read 

where c = 0 for t ( I/S and c = i - 2t for 11, < t < 1, and the number p is deter- 

mined from the equation t = p/q, in which p and q are integers. 
By this choice a certain limited class of problems is considered, since Formula (7) pre- 

determines the asymptotics of the stress. In particular, expansion (7) does not correspond 
to a boundary layer, and the theory based on (7) shot& be considered as a theory of the 
internal state of stress. Moreover, It must be considered a specialized theory of internal 
ststes since the class of Internal states of stress compatible with (7), although very wide 

(for more details on this see [44] ), does not embrace all possible cases. 
With the aid of (7), two-dimensional shell equations are constructed as follows. One 

fixes the number of terms to be retained in the expansion (7). The formulas obtained 
are put into the three-dimensional equations of the theory of elasticity and the usual 
procedure of equating coefficients of like powers of h, is carried out. This leads to a 
system of approximate equations. In these equations one easily Integrates with resect to 

the transverse coordinate and, having thus eliminated It, is left with two-dimensional 

equations. Furthermore, using such concepts as forces, moments, displacements of the 
mean surface, etc., one may estabIlsh that the equations obtained are equivalent to one 
or another of the systems of equations of the theory of shells. If one retains the small 

terms In (7), then one obtains equations of approximate theories (such as a membrane 

theory, a theory of approximate states with large variation, and so on). An lnrease in the 
number of terms In Expansion (7) will correspond to a transition to one variant or another 
of the equations of the full theory of shells. These variant.? will become more complex 
as the number of terms retained In (7) Is Increased, and at some Instant there will occur 
a qualitative change in the theory (an Increase In the order of the equations, a necessity 
of introducing new concepts, etc. ). 

Thus for each fixed number of terms retained In (7), there corresponds some two- 
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dimensional shell theory possessing two important properties. 
a) An estimate of its formal asymptotic accuracy is obtained immediately by see- 

ing the order of the terms excluded from (7). 
b) Such a theory of shells may be considered as initial approximation for some 

iterative process which allows one to obtain any formal asymptotic accuracy desired. 

26. Among all variants of the classical theory obtained by the method described in 

the preceding Section, it is natural to select the asymptotically optimal variant, by which 
one undestands a variant which, on the one hand, does not leave the framework of the 
usual concepts of the classical theory, and on the other hand, involves the retention in 

(7) of the largest number of terms. 

Such a variant of the classical theory was constructed in [44]. 
The corresponding system of equations consists of the usual number of static and purely 

geometrical equations and of elasticity relations having the form 

Cl = - 2Eha 
3 (1 - v2) c 

X1+VXP-(~-~)al-~(~+~)(el+~)]-~Qv 

tll=$$)k-$-) 

(with analogous relations for quantities with index 2). 
Here Qv and m are the magnitude of the normal load and the normal compression, 

respectively. 

The normal asymptotic error in the theory (8) is determined by Formula 

e = O(h+*-sf) (9) 

which, of course, refers only to the errors in the equations. To estimate the error in the 
boundary conditions one must have available formulas of the type (5). which up to now 
have been constructed only for plates. 

27. The estimation formulas (9) and (3) are formally in agreement, but the first of 
them contains more information. 

We consider, for example, a shell with positive curvature, loaded and supported in such 
a manner that its fundamental state of stress has zero variability. For such a shell the 
internal state of stress consists of a basic state of stress, for which by assumption t = 0 
and a simple edge effect, for which always t = r/s. Therefore Formula (3) in this‘case 

yields a n O(/,‘,) 

and at the same time Formula (9) gives for the basic state of stress 

e = O(h,z-zf) 

and for the simple edge effect 
e = O(h’,) 

Formally the results coincide, since the error in the large is equal to the largest of the 

possible errors. However, for an evaluation of the construction the basic state of stress is 
more important and one should not neglect the possibility of attaining a greater accu- 
racy for it. It should be remembered, moreover, that in this case it is a question of a 
theory for the internal state of stress, from which edge stresses corresponding to a bound- 
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ary layer have already been excluded. It would be logically inconsistent to place other 
edge stresses corresponding to the simple edge effect in a position comapable to that of 
the basic state of stress (see Note in Section 10). 

Appendix. In conclusion we consider in greater detail the connection between the 
boundary layer and the formulation of boundary conditions in the theory of the internal 
state of stress. To simplify the exposition we make certain assumptions. They can all be 

corroborated by pursuing asymptotic methods. 

Suppose a three-dimensional medium is given in the form of a shell, and let (a, B, y) 
be an orthogonal coordinate system in which a and fi are parameters on the lines of 
curvature on the mean surface, A’ and B' are the coefficients of the first quadratic 
form. and Rr and RI are the principal radii of curvature. We introduce unsymmetric 

components of a stress tensor by the following equations (primes designate the usual stress 
components): 

We shall suppose that the aoordinate surface u = cc0 is a free edge of the shell. On it 
the boundary conditions may be written as: 

oa+ S, = 0, %a+ T;fi = 0, ~a,+ Tay = 0 (11) 

Here a,, raB, ray are the unsymmetric stress components of the internal state of 
stress,and S,, Tar,, Ta,, are the unsymmetric stress components in the boundary layer, 
which components are also defined by formulas of the form (10). 

The problem spoken of in Section 17 consists in transferring to the boundary layer a 
portion of the edge stresses without disturbing its property of decaying. 

We shall write out the equations of the theory of elasticity for the stresses and displace- 
ments in the boundary layer. They may be put into the form 

E avf3 - =2(i+v)TaB+ ta8, 
aP > 

= 3 (1 + v) T,, + t,, 

The following notations 
metric stress components, 

av, E- = 2 (if 4 Tay + tBu ar (..$$g) 

are used here: S,, Tar,, S,,, Tar,,, Tav, S, are the unsym- 
V,, Vi, V, are the displacements, and by X. Y and Z we 
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understand the following expressions: 

X=kp(S,- aTpa ma, Sal+ k, (Tap + Tpa) +-q- + 7lR1 T + R1 2T ay 

Y=k&-- asp 8,) + kp (Tap + Tea, + F + r/R.,- rPY +2p 
ap, RI py 

s, sa aTP, Z= kgT,y+k,TBy-K-~+- 
+. 

(13) 

sa9 sBv tapv tav- $3~ are certain expressions which will not be needed below. 
The boundary layer should decay rapidly. Therefore the quantities in (12) sought 

should change rapidly with respect to 01 and y ; and this means that the principal terms 

in (12) will be those which are written out explicitly. 

This may be easily verified by examining Expressions (13). These involve either ex- 
pressions not differentiated with respect to u or y, or terms containing small multipliers 
y/R,, y/R2; one may also convince himself that the quantities s,, sa, tae, tav, tgv are 
of second order. 

Discarding all terms in (12) not written out explicitly, we obtain equations coinciding 
in form with the equations of the theory of elasticity for a body referred to Cartesian 
coordinates p, y, p, whose stresses and displacements do not depend on the coordinate 

11. The problem of constructing such a stress-strain state is separated into a plane prob- 
lem involving the determination of quantities 

&, Se, S,, Tav..Y~vt Y (14) 

satisfying the first, third, fourth, fifth, sixth and eighth of Eqs.( 12). and an antiplane prob- 
lem consisting of the determination of the quantities 

T a@ TWv vb (15) 

satisfying the second, seventh and ninth of Eqs,(l2). 
The physical interpretation of this result is described in Section 13. Eqs. (12). after 

second order terms have been discarded, revert to the equations describing the stress- 
strain state of a straightened strip. q (see Fig. 1). The facial sides y=f h of this strip 
are free from loads, since the surface forces are considerd in the theory of the internal 

state of stress. Stresses are also absent at infinity(since by assumption the stresses should 
die out). With this in mind, one may compose the equilibrium conditions in the entrire 

semistrip PO d p < - cc, - h ( y < i- h (~0 corresponds to u = oo) . Considering 
X, Y, Z as components of a body force, we obtain the six following equations 

+h 

s 

-kh 
s= I_ dy+) dy yXdp=O, 

-kh 

s 1 

+_‘b PO 
T 

-h -h do --I 
=p P=P#) dT+ \ dy 5 Ydp=O 

--I1 --P 

+h +h 

s 1 

if’ -t? 

T clt _dy+ id7 f Zdp =O. 1 S, I,_,@~ -t- \ dy f [XT - Zpldp =O WI 
-IL -#I -co 41 41 --oo 

+> 4 v 3 
_~dT - \dy ) Teudp+ \rdT ) ydp=O 

-.L do --B -CO 
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+h 9 s I +yh 6 

dT T,#p - d’r s s Ypdp-0 
-h do -h-co 

which represent necessary and (as may be expected) sufficient conditions for the exist- 
ence of a decaying boundary layer. 

In (16) the contour values of S,, TaLa, T,, may be replaced by the contour values of 

‘CL* Taj3t %y- Then relations are obtained, from which a natural formulation of the bound- 
ary conditions of the theory of the internal state of stress should be derived. These will 
be conditions under which the internal state of stress will deserve its name; i. e. it really 

reflects elastic phenomena taking place far from the edge. 
Eqs. (16) depend on quantities connected with the boundary layer, and, in order to inter-. 

pret them as boundary conditions for the theory of the internal state of stress ;one must 

make some sort of assumptions regarding the solution of the boundary layer problem. 

The simplest of them consists in assuming that it is possible to set X, Y, 2 equal to 
zero everywhere in (16). 

Then, after using (11) to replace the boundary values of S,, TUB, Tarv in the first four 
equations of (16) by boundary values of u,, ~~a, ray we obtain 

fh +h +n 

s 1 

th 
=a 

P=PO 
dy= 

s 1 r,fi _dr = \ rau I#_,,dr = 1 % Ipsp,rdr = O (17) 
-4 -It --A -h 

These four equations form then the simplest variant of the boundary conditions for the 
internal state of stress theory (for a free edge). They signify the requirement that all 
three forces and the bending moment vanish at the edge. It is evident from the fifth of 
Eqs. (16) that the twisting moment need not vanish, since within the framework of our 
assumptions it is absorbed by the internal stresses of the boundary layer. 

The simplest refinement of the boundary equations (17) may be attained by replacing 

the assumption taken above by two others: 

a) in the fifth and sixth equations of (16) one may discard terms with X and Y; 
b) for purposes of the first four of Eqs. (16). one may retain in Formulas (13) for.X, 

Y, Z. only the quantities (15) referring to the antiplane problem, and throw out all quan- 

tities (14) referring to the plane problem. 
By virtue of assumption (b) we obtain from (13) 

Z 5 !?!% + k,TBv = +B $ (AT$,) 
* 

We insert this result into the third equation of (16), replacing TQy by rarv and see 
now what this condition implies. 

We have +‘I +I’ pp 

- 5 r,,dy + dy 
s s 

& .$ (ATBy) dp = 0 

-h -h --c*) 

Noting that dp = Ada and that TB,, decays rapidly with P, and on this basis replacing 
B by its contour value Bo, we obtain 

+h 6 

s s 
dy +B ; (ATaJ dp 

--II --00 

-;-@T 3 T&p) 

--oo 
By virtue of the fifth of Eqs. (16) and assumption (a), one may express the integral in 

braces, first in terms of the contour value of TQa, and then in terms of the contour Value 
of v=p. .From. this one obtains the following well-known condition : 
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as a result of the simplest refinement of one of the four boundary conditions (17). The 
fifth of Eqs. (16) does not appear here as an independent condition, but rather is used only 
to satisfy the results obtained. 

The boundary conditions (5) givenabove for the theory of plates are a result of 
further refinement of the considerations described here. 
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